Теоретические основы инвестиций в акции, облигации и стандартные опционы - страница 16

Шрифт
Интервал


го и jго видов соответственно.

Поскольку , а также при соответствующие коэффициенты корреляции равны единице () и, кроме того, и , получаем соотношение для СКО доходности портфеля активов [2]


Неравенство под суммой означает, что суммирование распространяется на все возможные сочетания и при условии выполнения указанного неравенства. Количество сочетаний и во втором слагаемом выражения (1.9) составляет .

Теоретически коэффициент корреляции доходов активов может принимать значения в пределах от –1,0 до +1,0. Однако на практике не существует активов, которые имели бы отрицательную корреляцию с каким–либо другим активом [1, 5]. По этой причине в дальнейшем будем полагать .

Коэффициенты корреляции доходов (стоимости) активов iго и jго видов рассчитываются с использованием исторических данных по формуле [2]


где – количество торговых дней в выборке исторической стоимости активов; и – стоимости активов iго и jго видов соответственно в –ый торговый день; и – математические ожидания стоимостей активов iго и jго видов соответственно.

Таким образом, с целью оптимизации структуры портфеля активов полученная совокупность соотношений позволяет оценить математическое ожидание и среднее квадратическое отклонение доходности портфеля активов. Матричная запись значений и позволяет использовать методы линейного программирования для оптимизации структуры портфеля активов [1, 3].


1.5. Достижимые множества портфелей

В портфельной теории решение задачи оптимизации структуры портфеля активов связано с понятием «достижимое множество портфелей», которое можно сформировать из ограниченного количества исходных активов [1]. В данном случае под активом понимается совокупность ценных бумаг одного эмитента, приобретённых по одинаковой цене, и, как следствие, все эти ценные бумаги обладают равными МО и СКО доходности, а их количество в активе зависит от суммы вложенных денежных средств.

Управление структурой портфеля в пределах достижимого множества осуществляется путём целенаправленного распределения капитала между активами. Поэтому достижимое множество является инструментом для выявления оптимальной структуры портфеля, что позволяет инвестору наиболее эффективно использовать ограниченные финансовые ресурсы.

Достижимое множество портфелей является областью определения