Компьютерное зрение с OpenCV и Python: практическое руководство - страница 7

Шрифт
Интервал



cv2.imshow('Rotated Image', rotated_img)


cv2.waitKey(0)


cv2.destroyAllWindows()


```


В этом примере мы повернули изображение на 45 градусов и сохранили его в переменной `rotated_img`.



В этой главе мы рассмотрели три фундаментальные операции с изображениями: резку, масштабирование и поворот. Эти операции часто используются при обработке изображений и являются основой для более сложных операций. В следующей главе мы рассмотрим более сложные операции с изображениями, такие как фильтрация и преобразование изображений.



2.3. Работа с цветовыми пространствами



В предыдущих главах мы уже познакомились с основными понятиями компьютерного зрения и научились работать с изображениями в OpenCV. Теперь давайте поговорим о цветовых пространствах, которые играют важную роль в обработке и анализе изображений.



**Что такое цветовое пространство?**



Цветовое пространство – это математическая модель, которая описывает способ представления цвета в цифровых изображениях. Цветовое пространство определяет, как цвета будут представлены в виде числовых значений, и как эти значения будут интерпретироваться компьютером.



**Основные цветовые пространства**



Существует несколько основных цветовых пространств, которые используются в компьютерном зрении:



* **RGB (Red, Green, Blue)**: Это наиболее распространенное цветовое пространство, в котором каждый пиксель изображения представлен тремя значениями: красным, зеленым и синим. Эти значения обычно представлены в виде 8-битных целых чисел, что позволяет представить 256 различных оттенков каждого цвета.


* **BGR (Blue, Green, Red)**: Это цветовое пространство аналогично RGB, но порядок цветов обратный. OpenCV по умолчанию использует цветовое пространство BGR.


* **HSV (Hue, Saturation, Value)**: Это цветовое пространство представляет цвета в виде трёх компонентов: оттенка (hue), насыщенности (saturation) и яркости (value). Это цветовое пространство часто используется для разделения объектов на изображении по цвету.


* **YCrCb (Luminance, Chrominance)**: Это цветовое пространство представляет цвета в виде яркости (luminance) и двух компонентов хроминанса (chrominance). Это цветовое пространство часто используется в видеокодировании.



**Преобразование между цветовыми пространствами**



OpenCV предоставляет функции для преобразования между различными цветовыми пространствами. Например, функция `cv2.cvtColor()` позволяет преобразовать изображение из одного цветового пространства в другое.