Нематематика. Для начинающих продюсеров - страница 3

Шрифт
Интервал


В этом курсе математические понятия и объекты – не самоцель. Математики выходят в окружающий мир, чтобы найти себе задачку. После того, как они ее находят, они возвращаются в свой абстрактный мир, решают ее и остаются довольны. То есть, в отличие от обычных людей математике обычно не возвращаются со своим решением, чтобы изменить мир. Им математическое решение или доказательство теоремы важно само по себе. Математика (и математическая статистика) это во многом вещь в себе. А продюсер – это человек из окружающего мира. Для него математика и математики это ресурс и инструмент для чего-то большего, для решения проблем и изменения мира. Поэтому этот курс не про математику, а про нематематику. Он про реальный мир и про то, как в нем можно использовать полезные модели и инструменты. Нам часто приходится иметь дело с объектами нечисловой природы. И научиться измерять характеристики и свойства таких объектов, которые, к сожалению или к счастью, не выражаются числами. Практические занятия помогут нам в этом разобраться и мы поймем, как с этим быть.

Основные понятия

Математика – Mathematics

Математический объект – Object of Mathematics

Модель – Model

Измерение – Measurement

Контрольные вопросы

1. Что такое математика?

2. Какие разделы имеются в математике?

3. Что такое модель и для чего она используется?

4. С какими курсами связан курс математики для продюсеров?

Задание для выполнения

Сравнение двух наборов данных. Получите два набора данных. Сравните их между собой. Какие характеристики подлежат сравнению? Какие выводы можно получить в результате сравнения? В чем польза от такого сравнения?


МНОЖЕСТВО

Глава 2. Множества

В этой главе рассматривается одно из ключевых математических понятий. Под множеством понимается некоторая, вполне определенная совокупность объектов. Обсуждены основные операции, которые можно проводить с множествами, рассмотрено понятие алгебры множеств. Четвертая часть темы посвящена нечетким множествам, которые оказались подходящей моделью для большого числа практических ситуаций.

2.1. Понятие множества

Множеством называется некоторая вполне определенная совокупность объектов. Объекты, которые составляют множество, называются его элементами. Некоторый объект может принадлежать или не принадлежать данному множеству. Множество можно задать, например, перечислив все его элементы. Еще вариант – назвать некоторое характеристическое свойство, которому удовлетворяют все элементы данного множества и только они. Бесконечное множество состоит из бесконечного числа элементов, а конечное – из конечного. Подмножество данного множества включает некоторую часть его элементов. Очевидно, что множество является подмножеством для себя самого. Пустое множество не содержит ни одного элемента. Принято рассматривать также универсальное множество – оно включает элементы всех множеств, которые рассматриваются в конкретной ситуации. Универсальное множество это все, а пустое – ничего. Дополнение к некоторому множеству включает только те элементы, которые этому множеству не принадлежат. Множество и его дополнение вместе образуют универсальное множество. Два множества равны, если они состоят из одних и тех же элементов.